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Introduction
Fruit of the pineapple [Ananas comosus (L.) Merrill]

is anatomically complex, being a multiple fruit
(i.e. comprised of many fruitlets, each resulting from an
individual flower) which also contains accessory tissue,
involving expansion of bracts associated with each
fruitlet. The pineapple fruit is non-climacteric (Wills
et al. 1989). Starch storage occurs in the leaf and stalk.
The fruit accumulates soluble sugars and acids, and little
change in internal chemical composition occurs after
harvest. Chemical composition (e.g. sugar content)
varies from base to apex, and from sun to shade sides of
the fruit. Fruit eating quality is related to total soluble
solids (Brix), acidity, pH, Brix : acid ratio, and ester
concentrations (Bowden 1967; Smith 1988b). Smith
(1988b) reported that the variable best correlated with
eating quality was Brix (linear relationship, coefficient
of determination, R2 = 0.70). Fruit of less than 14 οBrix
was considered unacceptable for the fresh market. Wills
et al. (1989) report that the primary sugars in pineapple
fruit are sucrose, glucose and fructose (70, 20 and 10%
of total sugars, respectively).

Crop maturity is currently assessed before harvest by
sacrificing fruit to measure juice Brix. External skin
colour is used to assess fruit quality in the packing shed,
and flesh translucency is used in processing operations.
Both measures are accepted as subjective and
approximate, and vary between seasons. Measurement of
Brix of the juice of a cut fruit is destructive, and cannot
be used to grade all fruit. A quadratic relationship
between eating quality and fruit specific gravity was
described by Smith (1984). This relationship may reflect
the contribution of sugar content to fruit density. For
example, an increase in the Brix content of a solution
from 7 to 15o will increase specific gravity by 8%. Smith
(1988a) recommended specific gravity as the best single
index for grading intact fruit for eating quality. However,
the relationship was dependent on season and geographic
location, with an average R2 of only 0.28. We interpret
this result as the contribution of air spaces within the
fruit (infertile carpels and floral areas). Maturation of the
fruit is likely to involve expansion of bract and carpel
tissues, and thus a decrease in air content and an increase
in specific gravity of the fruit.
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The potential of near infra-red (NIR)
spectroscopy for non-invasive measurement of fruit
quality of pineapple (Ananas comosus var. Smooth
Cayenne) and mango (Magnifera indica var.
Kensington) fruit was assessed. A remote reflectance
fibre optic probe, placed in contact with the fruit skin
surface in a light-proof box, was used to deliver
monochromatic light to the fruit, and to collect NIR
reflectance spectra (760–2500 nm). The probe
illuminated and collected reflected radiation from an
area of about 16 cm2. The NIR spectral attributes were
correlated with pineapple juice Brix and with mango
flesh dry matter (DM) measured from fruit flesh
directly underlying the scanned area. The highest
correlations for both fruit were found using the second
derivative of the spectra (d2 log 1/R) and an additive
calibration equation. Multiple linear regression (MLR)

on pineapple fruit spectra (n = 85) gave a calibration
equation using d 2 log 1/R at wavelengths of 866, 760,
1232 and 832 nm with a multiple coefficient of
determination (R2) of 0.75, and a standard error of
calibration (SEC) of 1.21 oBrix. Modified partial least
squares (MPLS) regression analysis yielded a calibration
equation with R2 = 0.91, SEC = 0.69, and a standard error
of cross validation (SECV) of 1.09 °Brix. For mango,
MLR gave a calibration equation using d 2 log 1/R at 904,
872, 1660 and 1516 nm with R2 = 0.90, and SEC = 0.85%
DM and a bias of 0.39. Using MPLS analysis, a
calibration equation with R2 = 0.98, SEC = 0.54 and
SECV = 1.19 was obtained. We conclude that NIR
technology offers the potential to assess fruit sweetness in
intact whole pineapple and DM in mango fruit,
respectively, to within 1° Brix and 1% DM, and could be
used for the grading of fruit in fruit packing sheds.
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In contrast, fruit of the mango (Magnifera indica) is a
simple, single-seeded berry. As such, chemical
composition varies little within the mango fruit, relative
to pineapple. The fruit is climacteric (Wills et al. 1989),
with starch stored in the fruit converted to sugars during
ripening. Eating quality of the fruit is related to dry
matter (DM) content, an index of starch content (Bradley
and Scudamore-Smith 1987). The current Queensland
industry standard for fruit harvest is a minimum of 14%
DM, which is estimated by a subjective visual assessment
of the colour of the flesh of a cut fruit, or determined by
oven drying in a laboratory. Ripeness and suitability for
processing is determined by firmness of the fruit.

Near infra-red (NIR) spectroscopy, nuclear magnetic
resonance (NMR), and acoustic techniques all offer
potential for the non-invasive assessment of the internal
composition of intact fruit. NIR spectroscopy is the most
advanced with regard to instrumentation, applications,
accessories and chemometric software packages. NIR
spectroscopy was first used to detect HCl in solution
(Gordy and Martin 1939). Kaye (1954) developed the
analytical application of NIR spectroscopy with work on
spectral identification of organic compounds. Ben-Gera
and Norris (1968) recognised the potential of NIR
reflectance spectroscopy, in which light reflected from
the sample rather than transmitted through the sample
was detected, for non-invasive analysis of cereal grains
and oilseeds. Protein, oil and moisture in both cereal
grain and soybean seed was correlated with absorbances
at 1680, 1940, 2100, 2180, 2230 and 2310 nm. Norris
et al. (1976) correlated forage quality with absorbances at
1672, 1700, 1940, 2100, 2180 and 2336 nm. These
authors suggested that (inexpensive) discrete filter
instruments, as opposed to instruments incorporating a
scanning monochromator, would be suitable for such
analyses. Adoption of NIR technology by the food and
fodder industries followed in the late 1970s to early
1980s, with application to quality assessment of flour,
baked products, dairy products and forage (Shenk and
Westerhaus 1993).

A useful review of NIR spectroscopy and its
application in the food industry is presented by Osborne
et al. (1993), and Shenk and Westerhaus (1993). Briefly,
in discrete filter instruments, measurement of reflectance
is highly influenced by light scattering by the sample,
and uniform sample particle size is required. Use of the
first and second derivative data treatments alleviates the
problem of light scattering by an irregular surface,
enabling consideration of intact fruit samples. However,
such a procedure requires a scanning monochromator
and increases the level of calculations required. During
the mid 1980s, commercial companies began marketing
NIR spectroscopy instruments incorporating a scanning
monochromator or scanning filters (‘tilting filters’) for
the analysis of agricultural products. More recently,

NIR spectroscopy has benefited from increasing
sophistication of electronics, fibre optics, software and
calibration techniques. In particular, better chemometric
software packages have been developed which are
necessary for calibrations involving the first and second
derivatives of spectral absorbance.

There are more than 500 NIR reflectance and
transmittance instruments in use in Australia for the off-
line analysis of grain and other produce (Ronalds pers.
comm.). Applications have been reported for the off-line
analysis of organic acids, alcohol, amino acids, cellulose,
chlorophyll, fibre, oil, fungal spores, moisture, protein,
starch and sucrose in such products as biscuits, beer,
cheese, flour, meat, milk, pasta and wine (Osborne et al.
1993), and for the in-line analysis of sugar mill streams
(N. Berding pers. comm.).

Near infra-red spectroscopy has been used to non-
invasively assess DM in onions (Birth et al. 1985),
soluble solids in intact cantaloupe (Dull et al. 1989),
peach (Kawano et al. 1992), mandarin (Kawano et al.
1993) and pineapple fruit (Shiina et al. 1993), and sugar
content, acidity and hardness of plum fruit (Onda et al.
1994). Commercial (Mitsui Mining Corp., Omiya and
Maki Manufacturing Co., Hamamatsu) in-line NIR
spectroscopy units are used in Japanese packing sheds to
assess the sweetness, ripeness and acidity of thin-skinned
simple temperate fruit (citrus, apples, pears and peaches)
at 3 pieces per second per lane (Kawano 1994). These
units operate in either reflectance or transmittance modes,
using incident white light with post-dispersive spectral
analysis, rather than incident monochromatic light. NIR
spectroscopy technology has not been used for grading
intact fruit in Australia. In this study, we consider the
application of NIR spectroscopy for the non-invasive
assessment of pineapple and mango fruit eating quality.
Results for pineapple are contrasted with those obtained
by Shiina et al. (1993). These fruit present the challenges
of large size, thick skin, multiple fruit and the correlation
of NIR absorbance data with fruit DM (starch) content. 

Materials and methods
The experimental approach of Kawano and

co-workers was adopted in this study. Kawano et al.
(1992, 1993) reported the use of NIR spectroscopy for
non-invasive assessment of Brix of peach and mandarin
fruit, in reflectance and transmittance modes,
respectively. The steps followed in the development of a
calibration equation (choice of simple absorbance data, or
first or second derivative of data, selection of ‘gap’ and
‘segment’ size, and selection of the form of the
calibration equation) are standard. However, the
conclusions are not universally applicable to all fresh
fruit because of the effect of fruit surface characteristics
and internal chemistry on the NIR reflectance spectra. We
therefore anticipated recommendation of a different set of
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data manipulations, as well as specific wavelengths, to
that reported by Kawano and co-workers (1992, 1993).

Pineapples (var. ‘Smooth Cayenne’) were grown
commercially at Yeppoon, Central Queensland. Fruits
used for specific gravity work were derived from a field
trial involving different levels of potassium fertiliser.
Fruits were harvested in November 1994 (specific
gravity measurements) and February 1995 (NIR
spectroscopy measurements), and transported to the
laboratory on the day of harvest. Specific gravity of
developed fruit was determined from fruit weight and
volumetric displacement of distilled water. Scanning
commenced after the fruit had equilibrated to 23–25oC,
and within 3 days of harvest. Mangoes (var. Kensington)
grown commercially at Alton Downs, Central
Queensland, were harvested ‘hard green’, but unripe in
late December 1995. Scanning of the fruit was
undertaken within 3 days of harvest at 23oC. 

A scanning spectrophotometer (Model 6500,
NIRSystems, Silver Springs, MD, USA) using NSAS
software (Version 3.25, NIRSystems), was connected via
a 1.5 m fibre optic cable to a remote reflectance probe.
In this configuration, incident monochromatic light
travels through the fibre optic cable to the sample, and
visible and NIR detectors in the probe monitor the
intensity of reflected light. With each scan, reflected
light intensity was assessed over 2-nm intervals across
the spectral range 400–2500 nm. Each sample’s
spectrum was the mean of 50 scans (<1 min). Intact fruit
were held in a light-proof box with a 60 mm diameter
opening. A laboratory jack held the fruit against the
opening so that the fruit skin was in direct contact with
the quartz glass window of the probe. For each pineapple
fruit, spectra were measured at each of 4 equidistant
locations around the middle circumference of the fruit.
With mango, a spectrum was taken from each of the
2 faces (cheeks) of the fruit. A reference spectrum (mean
of 50 scans) was obtained using teflon as the reference
before collection of each sample spectrum. Teflon is
reported to have low absorption and similar light-
scattering characteristics to plant material (Birth et al.
1985; Dull et al. 1989; Kawano et al. 1992, using onion,
cantaloupe and peach, respectively) and is therefore used

to assess ‘incident’ light intensity relative to that
reflected from the sample surface.

After scanning, a 60 mm diameter stainless steel corer
was used to excise both skin and underlying flesh to 2 cm
depth. For pineapple, the skin was removed and about
20 mm of the flesh homogenised in a laboratory stomacher
for 2 min. The resulting slurry was centrifuged at
14 000 rpm for 4 min, and Brix of the supernatant
determined in duplicate using an Erma (Tokyo, Japan)
digital refractometer (accuracy ± 0.2 oBrix). Mango fruit
tissue samples were obtained in the same manner as
pineapple, but finely diced (<3 mm) and DM determined
by drying in a convection oven at 70°C for 48 h.

Calibration equations were derived from spectral
data using multiple linear regression (MLR) and
modified partial least squares (MPLS) analysis (ISI
Version 3.0, Infrasoft International, PA, USA). NSAS
software was found to offer superior instrument
operation and diagnostics, whereas ISI software
algorithms for MPLS were considered superior to the
NSAS PLS algorithms. The 94 pineapple samples were
ranked by analyte level, and a prediction set (10% of
population) was randomly chosen from each of 9 equal
Brix ranges. This procedure produced a prediction set
equally weighted for analyte level across the available
range. The remaining population (n = 85; ranging from
6.9 to 16.5 oBrix, mean ± s.d. 12.0 ± 2.34) was used as
a calibration set. The prediction set was characterised
by a range of 7.0–16.6 oBrix, mean 12.0 ± 3.32. The
fitness of the MLR regression was characterised within
the calibration and prediction populations by standard
error of calibration (SEC) and prediction (SEP),
respectively. 

A cross validation procedure (Shenk and Westerhaus
1993) was used in the MPLS regression analysis. Cross
validation calculates validation errors by partitioning the
population into several groups (6 in this case). Each group
is sequentially removed from the population and a
calibration established on the remaining population
(i.e. 6 calibrations undertaken). Each calibration is applied
to all members of the removed group until every sample is
predicted once. Validation errors are combined into a
standard error of cross validation (SECV). The SECV
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Side Northern side Southern side
Skin Flesh Stalk Skin Flesh Stalk

Crown 8.3 ±1.2 9.5 ± 1.1 9.1 ± 0.8 7.6 ± 0.9 8.6 ± 1.2 7.6 ± 1.5
Middle 10.7 ± 1.2 12.4 ± 1.2 9.8 ± 1.8 9.9 ± 1.2 11.8 ± 1.6 9.1 ± 2.3
Base 11.7 ± 0.5 14.2 ± 0.9 12.0 ± 2.0 11.5 ± 0.7 14.0 ± 1.9 10.6 ± 1.7

Table 1.  Spatial variation in total soluble solids (Brix) within pineapple fruit

Fruit were divided into northern and southern sides (sun and shade sides), crown (top), middle and base, and
flesh adjacent to skin (outer), flesh (middle) and stalk tissue (inner) segments

Data are presented as means ± s.e. (n = 5)



value ideally should be close to the SEC value. MPLS
procedure is efficient in that all samples are used for both
calibration and validation.

Near infra-red spectra of mango fruit were assessed as
for pineapple, before assessment of DM. The 2 sides of
the fruit were not different in terms of DM content (data
not shown). Consequently data from only one side of the
fruit was used in predictive calculations. A calibration set
of 62 mango samples with a range of 11.0–24.5% DM,
mean ± s.d. 18.0 ± 3.65, was used in MLR analysis. The
prediction set consisted of 7 samples, with a range of

12.8–22.2%, mean ± s.d. 17.9 ± 3.34. The prediction
samples were selected as indicated for pineapple. 

Results and discussion
Pineapple

Specific gravity as a measure of Brix in pineapple.
Fruit specific gravity was found to be poorly correlated with
Brix (quadratic relationship: oBrix = 58 – 95 SG + 48 SG2,
R2 = 0.2; linear relationship: oBrix = 9.5 + 1.5 SG,
R2 = 0.03; where SG is specific gravity). We conclude
that specific gravity is an unreliable indicator of Brix
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Figure 1. Near infra-red spectral data of three intact pineapple, representative of high, medium and low
Brix fruit. (a) Original [log (1/R)], (b) first derivative [d log(1/R)] and (c) second derivative [d2 log(1/R)],
spectra plotted against wavelength. The dashed line (b and c) represents the zero baseline.



content with fruit grown in Central Queensland. This
result is consistent with that of Smith (1984, 1988b),
who reported a poor overall relationship between eating
quality and specific gravity, with variation between
seasons and localities. For fruit at a given locality, Smith
(1988a) described a quadratic relationship, but noted the
relationship also depended on the ‘uniformity of fruit in
each farm block’. In our case, fruit were derived from
plants grown under various potassium fertilisation
regimes and a more tropical climate, which may have
upset the relationship between Brix and specific gravity
expected by Smith. As noted earlier, the air content of
the fruit may vary in response to a range of factors
unrelated to Brix content, overriding the contribution of
Brix to specific gravity. Our attention was then focussed
on the use of NIR spectroscopy for the non-invasive
assessment of Brix in fruit. 

Brix variation within pineapple fruit.  According to
Smith (1984), the Brix content of the bottom of the
pineapple fruit was always about 3 oBrix higher than the
top. We found a similar variation between top and
bottom of the fruit (Table 1). Also, the northern side of
the fruit (‘sun side’) was generally 1 oBrix higher than
the ‘shade side’ (Table 1). The Brix content of the inner
vascular tissue (stalk) of the fruit was generally several
units less than the central flesh, and slightly lower than
that of the flesh adjacent to the skin. The Brix of tissue
adjacent to the skin was highly correlated with that of

adjacent flesh (data not shown), being generally
1–2 units lower than adjacent flesh (Table 1). 

Near infra-red spectra of intact pineapple fruit.  The
rough skin of pineapple presents difficulties, relative to
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Table 2.  Norris regression (NSAS) of first and second derivative
pineapple spectral data (760–1300 nm) (n = 85)

The correlation coefficient (R) for each regression is presented with an
associated wavelength (nm) in parentheses as calculated for a range of

gap and segment sizes
Gap size is the wavelength change between successive means; segment

size is the wavelength range for which the absorbance data are
averaged for each data point in the correlation

Gap size Segment size (nm)
(nm) 8 12 16 20

First derivative [d log(1/R)]
0 0.730 (784) 0.730 (784) 0.731 (786) 0.731 (788)
4 0.730 (784) 0.730 (786) 0.731 (786) 0.732 (788)
8 0.730 (784) 0.731 (786) 0.732 (788) 0.732 (788)
12 0.731 (786) 0.731 (788) 0.732 (788) 0.732 (790)
16 0.731 (786) 0.732 (788) 0.732 (790) 0.731 (790)

Second derivative [d2 log(1/R)]
0 –0.711 (800) –0.729 (802) –0.743 (802) –0.749 (802)
4 –0.725 (800) –0.740 (802) –0.748 (802) –0.753 (804)
8 –0.737 (802) –0.747 (802) –0.752 (804) –0.755 (806)
12 –0.746 (802) –0.751 (804) –0.754 (806) –0.755 (808)
16 –0.750 (804) –0.754 (804) –0.755 (808) –0.774 (1220)

Wavelength selected MR SEC SEP Bias
λ1 λ2 λ3 λ4 (°Brix) (°Brix) (°Brix)

d log(1/R) for equation 1
788 0.68 1.68 1.28 –0.63
788 816 0.72 1.60 0.98 –0.25
788 816 850 0.75 1.53 0.91 0.02
788 816 850 1082 0.76 1.51 0.91 0.04

d log(1/R) for equation 2
788 970 0.72 1.65 1.26 –0.62
788 970 816 1216 0.76 1.57 2.97 –5.01

d2 log(1/R) for equation 1
866 0.73 1.61 2.03 –0.09
866 760 0.82 1.37 0.77 –0.46
866 760 1232 0.86 1.23 0.79 –0.06
866 760 1232 832 0.86 1.21 0.75 0.10

d2 log(1/R) for equation 2
866 778 0.68 1.73 1.64 –0.57
866 788 864 1234 0.81 1.41 1.37 0.42

Table 3.  Multiple linear regression (NSAS) of first and second derivative of pineapple
spectra for calibration (n = 85) and prediction (n = 9) populations

The calculated multiple regression coefficient (MR) and associated standard error of calibration
(SEC), and a standard error of prediction (SEP) and associated bias are presented for each

additional wavelength term used in each of two models
The form of the regression equations is explained in the text (equations 1 and 2)



the smooth skin of mango, for reflectance spectroscopy.
The original reflectance spectra of the skin of pineapple
fruit between 760 and 1300 nm was subject to baseline
shift in response to varying levels of radiation reflected
from the sample’s irregular surface and other factors,
such as skin thickness. Consequently, the actual
absorbance readings (log 1/R, where R is reflectance) are
difficult to relate to Brix content (Fig. 1a). The slope
(Fig. 1b), and rate of change in slope (Fig. 1c) (first and
second derivatives, respectively, of absorbance), were
found to minimise such background effects as discovered
by earlier workers. A first order derivative results in a
curve containing peaks and valleys that correspond to the
point of inflection on either side of the absorbance peak.
This presentation is difficult to interpret. The second
order derivative results in the display of peaks pointing
down instead of up, with peak location similar to the log
(1/R) plot. Note that features associated with these peaks
may be positively or negatively correlated with the
analyte of interest. For example, an increase in specific
water content of a fruit could be associated with a
decrease in specific sugar content.

Calibration between near infra-red spectroscopy
absorbance and Brix of pineapple fruit.  The NSAS
Norris regression program was applied to varying gap
(wavelength change between successive mean values)
and segment (absorbance data averaged over a range
of wavelengths) sizes for spectral data between 760
and 1300 nm to find the best derivative condition for
the multiple linear regression analysis. Spectral data
(2-nm resolution) were averaged over 4 ‘segment’
sizes (i.e. for a 20 nm segment, 10 values of the
original spectral data set were averaged), and for each
of 5 ‘gap’ sizes for correlation analysis of both first
and second derivative spectral data against Brix
(Table 2). Second derivative data in the majority of
cases yielded better correlations than first derivative
data. In general, varying segment and gap size had
little effect on the correlation coefficient (R) or the
wavelength in the correlation. The small change in
wavelength (784–790 nm for first derivative data, and
800–806 nm for second derivative data) was not
significant considering the resolution of the original
data (2 nm). The highest correlation coefficient was
obtained with a gap size of 16 nm and a segment size
of 20 nm, using the second derivative of absorbance at
1220 nm. However, optimal data smoothing was
achieved by the combination of a gap size of 0 and a
segment size of 20 nm. Using these parameter settings,
the highest correlation coefficient was obtained using
the second derivative of absorbance at 802 nm. These
settings were therefore used in subsequent analyses
(J. Guthrie and K. Walsh unpublished data).  In
contrast, Kawano et al. (1992) recommended the use
of a segment size of 16 nm and a gap size of 4 nm in

their study of intact peaches. The optimal parameter
settings for spectral data treatment are expected to vary
between fruits, as noted in the Introduction.

The NSAS multiple linear regression procedure was
applied to first and second derivative data, using up to
4 wavelength terms within 2 equation forms for the
relationship between analyte and wavelength data:

Predicted Brix = k0 + k1 d2 log(1/Rl1) + k2 d2 log(1/Rl2) 
+ k3 d2 log(1/Rl3) + k4 d2 log(1/Rl4)      (1)

Predicted Brix = k0 + k1 d2 log(1/Rl1)/k2 d2 log(1/Rl2) 
+ k3 d2 log(1/Rl3)/k4 d2 log(1/Rl4)           (2)

where k0 represents the intercept of the regression
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Figure 2. Relationship between Brix predicted from a MLR-derived
calibration and measured Brix in pineapple fruit for (a) calibration and
(b) prediction populations. The MLR procedure involved the second
derivative of absorbance data, following equation 3 (in text). Data of
population used in Figures 3 and 5. In the calibration regression
R2 = 0.76 and SEC = 1.21 oBrix; in the prediction regression R2 = 0.95
and SEP = 0.75 oBrix. 



equation, k1, k2, k3 and k4 represent constants, and
d2 log(1/R)λn represents the second derivative of
absorbance (log of inverse of reflectance) data for
wavelengths λ1, λ2, λ3 and λ4. In empirical terms, the
second equation form (equation 2) can allow for a
corrective term (e.g. to accommodate thickness of the
object in transmission studies). Dull et al. (1989)
developed a calibration for Brix in cantaloupe which
used equation 2, whereas Kawano et al. (1992) used
equation 1 in a calibration for Brix in peach. Again the
optimal data treatment is expected to vary between fruit
types and must be decided for the fruit of interest. 

A higher multiple correlation coefficient (MR) and a
lower SEC were achieved using second rather than first
derivative data, and using calibration equation 1 rather
than equation 2 (Table 3). Most explanation of data
variance in the additive calibration (equation 1) of the
second derivative data was achieved with the use of
2 wavelengths (866 and 760 nm). Incorporation of extra
wavelengths (1232 and 832 nm) into the correlation
equation (equation 3, also Fig. 2a) improved the
regression marginally, yielding a multiple regression
coefficient of 0.87 (coefficient of determination
R2 = 0.76) with a SEC of 1.21. The equation is:

Predicted Brix = 8.45 + 1596 d2 log(1/Rl866)
– 42 d2 log (1/Rl760) – 2182 d2 log(1/Rl1232) 
+ 464 d2 log(1/Rl832) (3)

Applied to a prediction set (n = 9, Fig. 2b), this equation
yielded a SEP of 0.75 with a bias of 0.10. This

prediction set was randomly chosen, but was of a small
sample number. The low value of the SEP, relative to
SEC, reflects the size of the validation set in relation to
the calibration set. Nonetheless, the SEC and SEP of
around 1 οBrix is promising for the application of this
technology to the grading of fruit quality. The decrease
in SEP with each added wavelength term (for second but
not first derivative data) indicates the data has not been
overfitted. 

The plot of correlation coefficients between second
derivative data and Brix against wavelength (Fig. 3)
illustrated the strong negative correlation at 760 nm, and
positive correlations around 800–832, 866 and 1232 nm.
As noted above, in the second derivative a positive
correlation between absorbance and Brix is indicated by
a negative correlation between the second derivative data
and Brix. Thus absorbance around 760 nm is positively
correlated with Brix, while absorbance at the other
wavelengths is negatively correlated with Brix. Kawano
et al. (1992) suggested that the negative correlation is
likely to involve water, as water content decreases as
sugar content increases.

An absorption spectrum was obtained for sucrose in
solution that matched that reported by Kawano et al.
(1992). Three characteristic absorption bands were noted
at 918, 1002 and 1175 nm and a weak band was noted
around 760 nm. The latter 2 bands overlapped those of
water (peaks at 1002 and 1175 nm) and therefore
represent the presence of water in the sugar solution
(Kawano et al. 1992). The positive correlation observed
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Figure 3. Correlation coefficients between the second derivative of log(1/R) (where R is reflectance) and Brix values, plotted against wavelength
(NSAS program) for pineapple. Fruit was harvested in February 1995. Data of population used in Figures 2 and 4.



between Brix and NIR spectroscopy absorbance at
760 nm and the negative correlation at 1232 nm is
expected from the absorbance spectra of sugar and
water, respectively. The presence of negative
correlations between absorbances at 800–832 and 866
nm implies that factors other than water content may be
inversely related to Brix level.

A MPLS regression analysis was performed with
second derivative data of the same population as used for
calibration in the MLR procedure. The resulting

calibration was applied to the same prediction set as used
in the MLR procedure and yielded 8 terms in the
equation. The calibration and prediction populations were
as used for the MLR procedure. The resulting calibration
(R2 = 0.91, SEC = 0.69 and SECV = 1.1) and prediction
regressions (R2 = 0.85, SEP = 1.2) (Fig. 4a and b) better
described the data than that derived by MLR (Fig. 2).

The MPLS regression assigns a weighting to each
wavelength term in the spectrum, for each term used.
Thus this type of regression requires a full NIR spectrum
to be acquired on each sample assessed. Use of the
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Figure 4. Relationship between Brix predicted from a MPLS-derived
calibration and measured Brix in pineapple fruit for (a) calibration and
(b) prediction populations. The modified partial least squares (MPLS)
regression procedure involved the second derivative of absorbance
data. Data of population used in Figures 2 and 4. In the calibration
regression R2 = 0.91, SEC = 0.69 and SECV = 1.100 oBrix; in the
prediction regression R2 = 0.85 and SEP = 1.2 oBrix.
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Figure 5. Relationship between dry matter predicted from a MLR-
derived calibration and measured dry matter content of mango fruit for
(a) calibration and (b) prediction populations. The MLR procedure
involved the second derivative of absorbance data, following
equation 3 (in text). In the calibration regression R2 = 0.90 and
SEC = 0.8% DM; in the prediction regression R2 = 0.96 and
SEP = 0.79% DM.



MLR-derived calibration (i.e. second derivative data of
absorbance at 4 wavelengths) would allow fewer
detectors to be used in an in-line instrument. Application
of NIR spectroscopy for the detection of fruit quality in
an in-line packing or processing setting will require a
rapid detection system. For example, the video-based
colour and size sorting technology developed by Colour
Vision Systems can assess 10 items of fruit per second
per lane (C. Esson, Colour Vision Systems, pers.
comm.). Therefore the MLR-derived regression is more
suitable for adoption into an in-line setting, using an
array of photodiodes to simultaneously record the
intensity over desired wavelength ranges. 

Shiina et al. (1993) reported on the use of NIR
reflectance spectroscopy to assess pineapple Brix and
acidity, using MLR (NSAS) and the pineapple cultivar
(Smooth Cayenne) used in the current study. NIR spectra
of the skin side of pineapple slices were correlated with
Brix of associated flesh, and a multiple correlation
coefficient of 0.89 (R2 = 0.79) with a bias-corrected SEC
of 1.06 οBrix was obtained using second derivative data
of reflectance at 8 wavelengths (788, 1604, 1140, 932,
2004, 1884, 1684 and 1652 nm). These wavelengths
were considerably different to those determined in this
study. These differences will reflect the use of different
instrumentation (e.g. different light intensity–depth of
penetration of fruit), data treatment conditions
(e.g. wavelength range in the current study was restricted
between 760 and 1300 nm), and pineapple growing
conditions. For example, in a comparison of pre- and
post-dispersive optical configurations (J. Guthrie and
K. Walsh unpublished data), we attempted a calibration
of a population (208 samples) of pineapples harvested in
December 1995. The optimum segment and gap size as

determined in the current study were used in the
calibration of the December group. This calibration
yielded a MR of 0.72 with a SEC of 1.30 using second
derivative data of 766, 878, 1018 and 760 nm
wavelengths (data not shown). These wavelengths were
similar to, but not identical with, those selected with
respect to the February population (Table 3). These
variations in wavelengths highlight the need to establish
a robust calibration, or series of calibrations, to
accommodate seasonal and locality variation. 

As noted above, different instrumentation will involve
different levels of incident radiation, and thus effectively
different volume and depth of the fruit will be assessed.
We found calibrations produced for the fruit surface to
differ from that derived of the internal flesh, and also of
the flesh side of <10-mm thick strips of the fruit skin
(data not shown). We conclude that the calibration is
specific to the instrumentation used, in terms of the
depth and area of the fruit which is assessed.

Mango
Data treatment conditions were optimised following

the procedure outlined above for pineapple fruit. Multiple
linear regression of second derivative absorbance data
against DM content yielded a calibration equation using
wavelengths at 904, 872, 1660 and 1516 nm with
R = 0.95 (R2 = 0.90) and SEC = 0.849 (Fig. 5a). Applied
to the prediction population, the equation yielded
SEP = 0.79% DM with a bias of 0.39 (Fig. 5b). MPLS
analysis gave a calibration equation with R2 = 0.98,
SEC = 0.538, and SECV = 1.186 (data not shown).
Applied to the prediction population, this relationship
yielded a R2 = 0.96 and a SEP = 0.79% DM. As for
pineapple, the MPLS regression procedure yielded a
calibration that better described the data than MLR. 

Depth of wavelength penetration into sample.  Two
attempts were made to assess the depth of tissue that
contributed to the NIR spectrum of an intact fruit. Near
infra-red spectra were obtained from a pineapple fruit as
the fruit was sequentially sliced from beneath the skin.
Predicted Brix (applying equation 3) was expected to
change rapidly once the sample was cut to a size less
than the effective depth of penetration of the relevant
wavelengths. There was no significant change in
predicted Brix as the sample depth was decreased from
90 to 5 mm (Table 4). Production of slices thinner than
5 mm was not possible.

In another approach, NIR spectra were obtained from
accumulated layers of cellulose filter paper soaked in
10% sucrose solution. Absorbances at 866 and 965 nm
were used. Absorbance at 866 nm was the primary term
in the pineapple calibration (equation 3). Good separation
of second derivative spectral data of the filter papers
soaked in sucrose solution was evidenced at 965 nm (data
not shown), and is probably absorbance by water.
Absorbance was initially high due to absorbance by the
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Table 4.  Assessment of the depth of pineapple fruit tissue
contributing to the near infra-red sprectroscopy spectra

Predicted Brix is calculated (equation 3 in text) of spectra collected
from two fruit samples as flesh was sequentially trimmed from the side

away from the skin, which was against the spectroscopy remote
reflectance unit

Thickness of flesh Fruit sample 1 Fruit sample 2
under skin (mm) (Predicted °Brix) (Predicted °Brix)

90 12.314 12.206
80 11.906 11.920
70 12.208 12.173
60 12.295 12.661
50 11.971 12.069
40 12.130 12.336
30 12.432 12.240
20 12.385 12.193
15 12.108 12.281
10 11.809 12.129
5 11.567 11.949



background. As layers were added, absorbance decreased
(Fig. 6). A steady reading was obtained with addition of
greater than 4 layers at 965 nm, and 10 layers at 866 nm,
equivalent to 2.2 and 5.4 mm in depth, respectively.
Apparently depth of penetration was dependent on
wavelength. We conclude that all spectral information
obtained from fruit was derived from within 5 mm of the
fruit surface, with an exponential decrease in
information with increasing depth within the 5 mm zone. 

Conclusion
The irregular skin surface, thick skin and spatially

variable composition of the pineapple fruit and the large
seed and complex chemistry of the mango fruit were
anticipated to present problems in the analysis by NIR
spectroscopy. The problems of variable surface reflection
were reduced by use of the second derivative procedure.
The intensity of light used allowed collection of spectral
data from only the surface millimetres of the fruit,
avoiding interference from the mango seed. However, the
Brix/DM of this surface layer was correlated with that
within the fruit (i.e. the measured value).

Near infra-red reflectance spectroscopy allowed a
prediction of Brix in pineapple to within 1 οBrix unit,
and of DM in mango to within 1%. Indeed, if samples
were classified into 3 groups using a calibration of
R2 = 0.76 (pineapple) or 0.90 (mango), 77.5 and 81.4%,
respectively, of the samples would be correctly classified
(interpolation of table presented in Shenk and Westerhaus
1993). The Brix of pineapple fruit in the fresh market

varies from 8 to 21°. Grading of fruit into a nominal
3 grades (low 8–10 oBrix; medium 10–13 oBrix; high
13–18 oBrix) would be useful for marketing. Grading of
mango fruit into 2 groups, relative to the industry
minimum standard of 14% DM is suggested as a useful
exercise. To cope with variation in quality within a fruit
(e.g. Brix within the pineapple fruit), NIR spectroscopy
assessment could be made at either a set location on the
fruit or a scan of the whole fruit.

We conclude that NIR spectroscopy is appropriate to
the non-invasive assessment of pineapple and mango
fruit quality. Further work is required to establish a
robust calibration to accommodate seasonal and locality
variations, followed by development of an in-line
assessment procedure capable of assessment at a rate of
items per second.
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